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Abstract

éurrent]y, the Space Defense Center (SDC) uses the position and
velocity data of a satellite track to update the orbital elements of
the satellite. An alternate approach would be to process the radar
data at the tracking site and transmit two-body orbital elements to SDC ’
as measurement updates. This would significantly reduce the data load 1

at SDC. The truth model used in this study to evaluate filter per-

il

formance and provide measurement updates to the filters includes the 1
first four zonal harmonics and the first sectoral harmonic of the geo-

potential gnqmihg_§ir drag. The estimator models include two-body

dynamics ahd;ﬁézperturbations. In addition, the derivative of the sem%} '
o

major axis is used to estimate the effects dueto air drag. Perfect

.

dynamics with measurement noise are assumed for the filter models.

Three filters are evaluated; Least Squares, Bayes, and Kalman. ‘The per-

formance of the three filters is similar. The Bayes and Kalman Filters
are nearly thé same and indistinguishable in this study. A1l three
filters performed adequately with the following exceptions. The filters
diverge when singularities are present in Fhe classical orbital elements.
A11 three filters underestimate the covariance of the estimates.

Finally, the filters track noise in the estimate of the derivative of
the semi-major axis, degrading the prediction capabilities of the

filters. : -

vii




ORBITAL ESTIMATION USING TWO-BODY CLASSICAL
ORBITAL ELEMENTS AS MEASUREMENT UPDATES

I. Introduction

The Space Defense Center (SDC) located in the NORAD Cheyenne ’/
Mountain Complex (NCMC) is responsible for maintaining current orbital
element sets for all earth orbiting satellites. Currently, there are
more than 4500 satellites orbiting the earth. SDC accomplishes its ‘
mission by receiving and processing data from various spacetrack
sensors located throughout the world. The data is processed at SDC and

the satellite's orbital elements are estimated at SDC. The orbital

elements are then used to predict the satellite's position for future
acquisition and tracking.

Currently, SDC estimates the orbital elements of a satellite using
the satellite's position and velocity data received from the spacetrack

sensors. Either a least squares, batch filter or a Bayesian, recursive

filter, is used in the estimation program. An average satellite orbits
the earth between twelve and sixteen times per day. Depending upon the
satellite's ground track and SDC tracking requirements, a satellite may

be tracked 10-15 times daily. Each track may contain fifteen separate

‘ measurements of position and velocity, or ninety individual pieces of
data per track. This could result in as many as 1000 measurements per

# i satellite per day being transmitted from the sensors to SDC. Also,

this data must be stored at SDC for a set period of time to be

available for estimating the satellite's orbit using a batch filter.




As the number of earth satellites increases and new, improved space-
track sensors provide more and better data, the communicatfons lines
to SDC and the data storage facj]ities at SDC are becoming overloaded.

The purpose of this thesis 1s to investigate the possibility of
reducing the amount of data transmitted to SDC per satellite track and
the amount of data stored at SDC. The proposal is to have the in-
dividual tracking sites process the position and velocity on each
track and generate two-body orbital elements using on-site computers.
The site will then transmit the two-body orbital elements, six pieces
of data per track, to SDC. SDC will then process the orbital elements
as measurement updates to an estimator which would include pertubations
to the two-body orbit in the estimate.

The approach taken in this thesis is divided into three parts.
First, a truth model will be developed to simulate an actual satellite

orbit and to provide data for the estimators. Next, three separate

estimators will be designed to estimate the satellite's orbital elements.

Finally, a performance analysis of the three estimators will be con-
ducted. A]lnest1mators will be designed to accept classical orbital
elements as measurements. Various satellite orbits will be investi-
gated to evaluate effects due to atmospheric drag, high and Tow
eccentricity, Tow inclination, and a lack of tracking data due to
unusual orbital geometry.

During this study the following assumptions are made:

1. The satellite is non-thrusting and unable to maneuver.
2. The satellite has a constant drag coefficient, constant
mass, and constant surface area.

3. The geocentric equatorial coordinate frame is considered to




P

be an inertial reference frame.

4. The earth's gravitational field is adequately modeled using
zonal harmonics through J4 and the first sectoral terms, C22 and S22.

5. The satellite dynamics are known perfectly.

6. The noise in the sensor tracking data i1s zero-mean, white,
Gaussian noise.

7. The atmospheric density above at an altitude greater than

800km is assumed to be zero.

This thesis i1s presented in the following chapters. Chapter II
describes the truth model, including satellite dynamics, coordinate
frame used, and the method of obtaining measurements for use in the
estimators. The third chapter presents the basic estimator model and
describes the lTeast squares, Bayes, and Kalman filters used. Chapter
IV describes the various satellite orbital cases used for filter eval-
vation. The fifth chapter presents the estimation results and filter

performance evaluation. The sixth chapter contains conclusions of this

study and recommendations for future work.
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II. Truth Model

The truth médel fulfills two important functions in this study.
First, it simulates an actual satellite orbit. The orbit is simulated
by numerically integrating the equations of motion for the satellite
using Cowell's method. In order to do this the coordinate frame and
system differential equations must be specified. Before integration,
the initial conditions for the differential equations must also be
specified. The equations of motion contain the two-body accelerations
plus perturbative accelerations due to the earth's geopotential and
atmospheric drag. After integrating the equations of motion, the
satellite's position and velocity are output from the truth model.
Zero-mean, white, gaussian noise is then added to the position and
velocity data, simulating actual radar tracks. Finally, the position
and velocity data are converted to the classical orbital elements for
use as measurement updates to the estimators. A description of the
orbital simutation and measurement updates will be completed in the
following paragraphs.

Coordinate Frame

|
Before integrating the equations of motion for a satellite, a

suftable inertial reference frame must be defined. Additional reference
frames, some non-inertial, may be defined to aid in computation.
Three coordinate frames are used in this study; geocentric-equatorial,
perifocal, and local horizon coordinate frames.

For earth orbiting satellites, the geocentric equatorial frame can

be assumed to be an inertial reference frame. As shown in Figure 1,




the center of this frame is the center of the earth and the principle
plane is the earth's equatorial plane. The positive X-axis points in
the direction of the vernal equinox and the positive Z-axis points in
the direction of the north pole. Finally, the Y-axis completes the
right-handed XYZ coordinate frame. It can be seen in Figure 1 that
the XYZ system is not rotating with the earth, but is fixed with
respect to the stars. This system is used primarily for expressing
and integrating the equations of motion.

The perifocal coordinate frame is shown in Figure 2. The funda-
mental plane for this system is defined by the plane of the sateliite's
orbit. The principle axis, Xp, points toward the perigee of the orbit.
The Yp axis is rotated 90° in the direction of orbital motion in the
orbital plane. The Zp axis completes the right-handed XpYpZp system.
The perifocal system is used for transforming from classical orbital
elements to satellite position and velocity.

The final coordinate frame is tﬁe local horizon coordinate frame.

The center of this frame is at the intersection of the satellite's ;

e e IT PR

position vector from the center of the earth and the surface of the
earth. The directions of this system are up along the radius vector,‘

' East, and North. This frame is convenient for expressing the earth's

geopotential.

In the course of this study, it will be necessary to transform
from one coordinate frame to another. The direction cosine matrices
necessary for the various transformations are shown in Appendix A.

States - State Equations

The system states used in the truth model are the satellite

position and velocity in the geocentric-equatorial reference frame.
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where ax, ay, and az are accelerations due to perturbative forces.
These forces will be discussed in later sections.

The units used in these equations are geocentric, canonical units.
In this system the distance unit, DU, is the earth's mean equatorial

radius, equation (2).

1 DU = 6378.145 Km o (2)
The time unit, TU, is chosen so that u is equal to one.
1 TU = 13.44686457 min (3)

Initial Conditions

Initial conditions are required for the satellite's position and
velocity in order to integrate the equations of motion. These condi-
tions are obtained by specifying a particular orbit at a particular
time. The orbital elements are transformed to a position and velocity
vector in the perifocal coordinate frame. The position and velocity
vector are then transformed to the geocentric-equatorial coordinate
frame, providing initial conditions for the state equations given in
equation (1). The technique for obtaining the position and velocity

from classical orbital elements is shown in Appendix B,
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Earth's Geopotential

The gravitational potential of the earth at a point at a distance
r from the center of the earth is,

U=20+% (r,?)n £ pf (sin 6) [Com cos my + Spp sin m]  (4)

n=2 m=2

where,

u is the earth's gravitational constant

re is the earth's mean equatorial radius

pg is the associated legndre function of degree n and order m
Cnm & Spp are numerical coefficients

$ is the geocentric latitude of the point

A is the geocentric longitude of the point

For m = 0, the Spm coefficients are not needed and the Cpy coef-

ficients are replaced by

dn = ~Cpo (5)

These harmonics are independent of longitude and are called zonal
harmonics. The zonal harmonic, J], is set equal to zero by choosing a
coordinate frame with the origin at the earth's center of mass. For

this study, only the terms through Jgq were retained. The terms for

m = n are called sectoral harmonics. Only the first sectoral harmonic,

m=n=2, is used in this study. The remaining terms, called tesseral
harmonics, are not included in this study.
The first term in equation (4) is the major term in the equations

of motion for a satellite and represents the two-body motion of the

satellite. This term is represented in equation (1) by the first




acceleration terms. The remaining terms in the geopotential are

included in the perturbation term.
The terms of the acceleration due to the earth's geopotential are
most easily expressed in the local horizon coordinate frame [Ref 9,

88-92]. In this frame

M4 sguutgeetagnn (6)
r s
where
ay
Qu = I
. - re n n
=-EN + §F (n¥1) = z PN (sins)[Cpm cos m + Spp sin ma]
r2{ g2 " om=0
(7)
S N1')
9 = v coss 3
- __-n 2 re n g m Pﬂ (sins)[Chm sfn mA - Spy cos mal
rz coss n=2 T m=0 (8)
1 aU
et
n
-n g fe g coss 3 (PR (sins)) [Cpm cos ma+Spp sin mad
rZ' _ r _ BT
n=2 m=0 (9)

The acceleration terms are then transformed to the geocentric-
equatorial frame for integration. The zonal and sectoral harmonics
and the associated legendre polynomials required for this study are
presented in Appendix C.

Atmospheric Drag

The acceleration on a sateilite caused by atmdépheric drag is

] (10)

-2 Bpva Va

a

e
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Cp % is the satellite's ballistic coefficient

is the drag coefficient of the satellite

(%]
o
1]

A is the satellite's cross-sectional area perpendicular to the
velocity
m is the satellite's mass
p is the atmospheric density at the altitude of the satellite
Va is the velocity of the satellite relative to the atmosphere.
The satellite's ballistic coefficient is assumed to be constant
for this study and is input into the system with the initial orbital
elements.

The velocity of the satellite relative to the atmosphere is

).("’wy
va= |y ° ™% (1)
2

where

X, ¥, and z are the satellite's geocentric-equatorial coordinates

w = .0588336001 :ﬁg- is the earth's angular rotation.

The atmospheric density, p, must be calculated from a model
atnosphere. The model atmosphere in this study was developed by
Jacchia in 1960 [Ref 7]. The model accounts for altitude above a
non-spherical earth and diurnal variatfons in the density. The density

is given by

K
b = og _FJQ? + 0.19 [exp(0.0055H4) - 1.0] [L:_zsmﬁg _%
] .

o
3

10




where

Logyg pg = -16.021 - 0.001985H + 6.363 exp(-0.0026H) (13)

6378.145 [r-1 + £ u2 + 3 2 u? (1-u2)] (14)

x
[}

is the height of the satellite above the earth.
r is the satellite's radius
f = 1/298.3 is the earth's flattening ’/

sin &

uz
8 is the satellite's geocentric declination

Flo is the solar flux at 10.7 cm

cosy = ux cos (D-50°) + uy sin (D-50°)
D = (Day of year) X 360°/365.25 days
ux = G i G is a perifocal frame unit vector, ? and 3 are ;

A ~

F uy = u - J)geocentric equatorial unit vectors.

For this study it is assumed that p = 0 for altitudes greater than 800km.
Measurements

g ' After the equations of motion are integrated, orbital elements

must be calcblated for updates to the estimators. 7“he satellite's

geocentric-equatorial position and velocity are output from the

numerical integration. Zero-mean, white, gaussian noise is then added
to the data to simulate errors in the radar data. The standard
deviation is 500m in the position and 10m/sec in the velocity. The
position and velocity data, including noise is then converted to

classical orbital elements. These elements are:

a - semi-major axis

e - eccentricity

1




e
)

inclination

w - argument of perigee

Q - right ascension of ascending node
M - mean anomaly

t - time of track

The method of transforming from a position and velocity vector to

classical orbital elements is shown in Appendix D. /

12




IIl. Estimation

In orbit determination, the system model is a non-linear set of
equations. The parameters in the model are well known and the assump-
tion of perfect dynamics is adequate for the estimation problem. Also
the observation relations are in general non-linear. The observations
are corrupted by zero-mean, white noise.

Three separate estimators are used to estimate the orbital param-
eters. The filters are a least squares filter, a Kalman filter, and an
inverse covariance Bayes filter.

The model dynamics, observation relationship, and the three filters
are discussed in the following sections.

Dynamics

The dynamics in this section are the same as the dynamics discussed
in Chapter II; however, a simpler model is proposed to reduce computa-
tional time and expense. The model proposed in this section is essen-
tially the same as the model currently used at SDC in their standard
model [Ref 14].

The system models of the estimators are designed to model the two-
body dynamics plus Jy effects and air drag. Only the secular terms in
J2 are considered. The secular effects due to J, appear in the deriv-
atives of argument of perigee, right ascension, and mean anomaly. The
presence of atmospheric drag reduces the semi-major axis a and eccen-
tricity e. Due to the difficulty in modeling the atmosphere, and there-
fore the air drag, the derivatives of a and e are included in the system

states and the atmospheric effect is estimated. The system states used

13
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in the estimators are (see List of Symbols):

_X_T = [a’ e, 1. wy MD é’ é]

An approximate solution to the non-linear system is given by

x(t) = £ (x (to), t)

or,
a(t) = ag + a(t-tg)
e(t) = ep + e(t-to)
i(t) = 1o
w(t) = wo + a(t-tg)
a(t) = qp + Q(t-to)
M(t) = Mo + ng(t-to) +-% ﬁ(t-to)z
a = ag
e = &
where

Ee
n

E

"

|
o
o

Nk =n+¢
is the Kozai mean motion -

3392
- =3oren (3 sin? 4-1)

2a2(1-e2)3/2

14
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(15)

(16)

(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)

(25)

(26)

(27)

(28)

(29)




A linearization of equations (17) through (24) yields the state

transition matrix, ¢, an 8 X 8 matrix. ¢ is given by

¢ = —v—.f (30)
The elements of ¢ are given in Appendix E.
Observation Relationships
The measurement updates to a filter are given in general by
2 =h (x(to), t) + ¥ (31)

where h must be determined through geometric relationships between the
measurements and the states. For example, if the satellite's position
and velocity vectors are used as measurement updates, then a set of |
equations similar to those in Appendix B would be required. Also
coordinate transformations from the station centered to perifocal ref-
erence frames would be required. This is currently the method used at
SDC. In this study the measurements are the classical orbital elements.

These measurements are a linear combination of the states.

Z=Hx+yv (32)
where
[t 0o o o o 0o o 0]
o 1 0 o0 0 0 o0 O
0o 0 1 0 0 0 o0 ©
0o 0 0 1 0 0 o0 0
H = (33)
0 0 0 0 ] 0 0 0
0o 0 0o o 0 1 o0 0

v 1s a zero-mean, white noise.
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The associated covariance matrix for the noise v, is Q. It is
assumed for this study that the noise components are uncorrelated, so
that the off-diagonal components of Q are zero.

In order to determine the diagonal elements of Q, it is assumed
that the initial tracking data had standard deviations of 500m in the
position vector and 10m/sec in the velocity vector. This noise was
added to the position and velocity vector and the orbital elements were
calculated. This process was repeated ten times and then an average
error for each orbital element was calculated. The results show that
a single value for the diagonal elements of Q is adequate. The value
used fn this study is 108.

Least Squares Filter

The least squares filter used in this study is a batch filter.
Thus, every time an update is required the data must be batch processed
to update the state estimate. In this study, the state vector is up-
dated after every ten measurements, using the previous estimate as the
reference trajectory. The basic algorithm used in this study is given

in the following steps [Ref 13, 62-63].

1. Input measurements, zi at times tj, measurement noise Qi, and
reference orbit xp(tg). 2z¢ will be a 6 X 10 matrix for the six elements
measured at ten different times. As stated, Q is a diagonal matrix
with a single, constant value at each diagonal element. Also, the
reference trajectory xp(tg) is the previous state estimate evaluated .
at time to.
2. Propagate the state vector x, to each time ti and calculate

x(ti) and the state transition matrix o(ti, tg).

16




3. Assemble, Q and H.

[_ 1
4
Q
Q= 2. (34)
i Yo
FH] o(ty, tg) ]
p e Hy o(t2, tg) (35)
| H1o #(t10, to))

4. Calculate the covariance matrix, P.
p = (T @1 w¥)] (36)

5. Calculate the residuals r{tj) and assemble into a vector.

r(ti) = z(t;) - H(tj) x(t{) (37)
r(t7) ]
r(tz)
r= |, (38)
| r(t10)

6. Calculate the change in the state vector sx(to).

sx(to) = P KT Q7' r - (39)
7. Calculate the estimated state vector x(to).
x(to) = xp(to) + 55_(150) (40)

17




8. Check for convergence. For this study &xj is compared to
/Pii. If the absolute value of the change in each element of the state
vector is less than its associated standard deviation, the solution is
assumed to have converged and the associated estimate is assumed to be
the state estimate at the epoch time, tg.

9. If the solution has not converged, the new solution replaces
the reference orbit. This new reference orbit is propagated to each
time, ti, and new residuals are calculated as shown in Step 5. This
process is repeated until convergence is achieved or a maximum number
of iterations is exceeded. The maximum number of iterations used in

this study is twenty.

The epoch time, tg, in this filter is always taken as the time of
the Tast measurement.

Since this filter uses only the last ten measurements, it is a
finite memory filter and should not encounter problems with the co-
variance matrix, P, becoming singular. A larger batch size or more
frequent updates to the estimates may be implemented; however, a standard
batch size of ten measurements per update is maintaiped in this study.

Some observations concerning the filter can belmade. First, when
using only the last ten measurements, the dimension of some of the
matrices becomes rather large. The Q matrix is a 60 X 60 matrix in
general; however, it is at worst block diagonal and in this case
strictly a diagonal matrix. The P matrix is an 8 X_8 matrix which must
be inverted. Both the P matrix and the H* matrix are calculated once
per state estimate update and are then assumed to be constant for that

update cycle. A more exact method would be to update the two matrices

18




each iteration. For this problem the possible decrease in the number

of iterations was not worth the corresponding increase in computational

time.

Bayes Filter

The Bayes Filter, or inverse covariance filter, used in this study
is a recursive filter, providing a state estimate update after every
measurement input into the filter. This filter propagates the estimated
state vector and its associated covariance forward to the time of the
current measurement. This estimate and the measurement are then com-
bined to form a new estimate of the state vector along with its as-
sociated covariance matrix. The algorithm used in this study is listed !

below [Ref 13, 82-85]. §

1. Input the previous estimate, x(tj - 1), new data, z(tg), and
its noise matrix, Q.
2. Propagate the state estimate and the covariance matrix to the

time of the new measurement, tj.

x(ti7)
P(ti)

f(x(ti-1)s ti - ti-1) (41)
o(ti,ti-1) P(ti-1) ¢ (ti t5q) (@)

The initial state vector in the filter is the first measurement.

The initial covariance matrix input into the system is

Pij
Pij

1. X104 i#=3j (43)
1. X 10°2

3. Calculate the new covariance matrix, P(tji).

P(t) = (P-1(t;-) + oF T Q1 Hoy™!

19




4. Calculate the gain matrix, G.

G = P(tq) o H q! (46)
5. Calculate the residual vector, r.

r = z(ti) - Hx(ty7) (47)
6. Calculate the change in the state vector, 6&x.

sx(t)

6x(-) + G(r - Hesx(-)) (48)

starting with

éx(-) =0 (49)

7. Check for convergence. For this study convergence is achieved

if

Hesx(-) <e (50)

[~
"

where

1. x 103 (51)

3
If the solution converges, the state estimate is
x(to) = x(tj-) + sx(t) (52)

8. If the solution has not converged, new residuals are calculated
based on the updated state estimate.and steps 6 through 8 are repeated.
If the solution has not converged after ten iterations the algorithm
is exited and the new state estimate is calculated as shown in

equation (52).

20
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The data storage requirements and the dimensions of the matrices
are greatly reduced for this filter when compared to the least squares
filter. The lérgest dimension of a matrix in this filter is 8 X 8.
This filter provides a state estimate update after every measurement.
This implies that the state estimate is more current than the least
squares filter; however, this filter must generate an estimate ten times
for every estimate generated by the least squares filter. Like the
least squares filter, the gain and covariance matrix in this filter
are calculated once per update cycle. These matrixes are then assumed
to be constant for the remaining iterations. Also, like the least
squares filter, the filter requires one 8 X 8 matrix-inversion per
update cycle.

Kalman Filter

The third filter investigated on this study is a Kalman Filter.
The operation of the Kalman Filter is quite similar to the Bayes Filter.
It is a recursive filter that provides a new state estimate following
each measuremgnt update. The algorithm used in this study is 1isted

below [Ref 13, 90-91].

1 and 2 - same as Bayes Filter.

3. Calculate the Kalman Filter gain, K.
K = P(ti-) of HT(Q + HoP(ti-)e THT)™} (53)
4. Calculate the new covariance matrix P(tj+).

P(ti+) = P(tj-) - KHoP(ti-) (54)

2]




5. Calculate the residuals, r.

r =z - Hx(t-)

6. Calculate the change in the state vector, sx(+).
sx(+) = sx(-) + K(r - Hesx(-))

7. Check for convergence. The convergence check is

r - Hesx(-) <g
where

ej = 1.0 x ]0'3
If convergence is achieved, the new estimate is
x(tj+) = x(ti-) + 8x(+)

8. If convergence is not attained, calculate new residuals
the updated state vector estimate and repeat Steps 6 through 8.
the maximum number of iterations is 10.

The characteristics of the Kalman Filter are the same as the
Filter except the Kalman Filter requires a 6 X 6 matrix inversion
instead of an 8 X 8 matrix inversion.

A summary of the three filter characteristics is listed in T

22
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(59)

using

Again,
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Characteristics

Method of Update

Frequency of Updates

Storage Requirements

Dimension of Matrix
Inversion

TABLE I

Filter Characteristics

Least Squares

" Batch

1 per 10 measure-
ments

Current estimate
and covariance
plus last 10
measurements

8Xx8

Bayes Kalman
Recursive Recursive

.every measure- every measure-

ment ment

Current estimate and covar-
jance plus last measurements

8X8 8X38




IV. Satellite Cases

Various satellite cases were investigated in this study to eval-
uate the performance of the three filters. The orbital elements for
each case are listed below along with an explanation of the objectives

of each case (see List of Symbols).

Case 1.
g = 1.2 DU = 7653.774 km
eg = .1
ig = .5 rad = 28.648°
wo = 1.0 rad = 57.296°
Qo = 2.0 rad = 114.592°
Mo = 3.0 rad = 171.887°
At =10 TU = 134.686 min
where

At is the time between measurement updates.
The satellite orbit is used to demonstrate the operation of the
filters under normal operation with no singularities in the orbital

elements. Normal operation is assumed to be one radar track every two

hours. E {
| I
|
Case 2.

ag = 2.0 DU = 12,756.286 km B

80=.1

io = 1.0 rad = 57.286°

wo = 2.0 rad = 114.592°

Q2 = 3.0 rad = 171.887°

24
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1.0 rad = 57.296°

50 TU

1
? Mo
{

672.343 min

At

The objective of this orbit is to investigaté-the effect on the

estimators with a long time delay between updates. There are approxi- |

mately two updates per day with this orbit.

Case 3. ’ 1

i ag = 1.15 DU = 7335 km
;
! =
:L‘ €o .1
| ig = .5 rad = 28.648°

wg = 1.0 rad = 57.296°

Qo = 2.0 rad = 114.592°

Mo = 3.0 rad = 57.296°

Ay =10 TU = 134.686 min

This orbit is a Tow altitude orbit. This orbit should identify
problems in estimating air drag. The perigeealtitude for this orbit is
200 km. Also the drag coefficient of the satellite was increased by

a factor of 10, from 0.01 to 0.1, to increase the effect of air drag.

Case 4.

" ag = 1.2 DU = 7653.774 km ,

€
(=]
i
o (=] o o o
. . . . .

8¢ = 10 TU = 134.686 min

25




This orbit introduces singularities when estimating the classical

elements from position and velocity data.

Case 5.
ag = 4 DU = 25500 km
eqg = .7
ip = 1.1 rad = 63°
wo = 4.7 rad = 270°
Q0 = 1.0 rad = 57°
Mp= Orad =0°
At = 10 TU = 134.686 min

This orbit simulates a highly eccentric orbit. To simulate
tracking problems and observation problems, all data generated at
altitudes greater than 6000 km were disregarded. In this case the At
given will vary, depending upon the altitude.

The performance of the filters.using each of the orbits is pre-
sented in Chapter V. The filters are evaluated for twenty measurement
update cyc]e;, which is two days for the high frequency tracks and ten

days for the low frequency tracks.
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V. Filter Performance Evaluation

The three filters used in this study are evaluated based on each
filter's estimate of the covariance, the mean error of the state
estimates, and the root mean square errors of the state estimates.

Covariance Analysis

Since the dynamics in this problem are non-linear, a Monte Carlo
analysis is required to evaluate the covariance estimate of the three
filters. The first step is to determine the number of runs required
‘for the covariance from the Monte Carlo analysis to reach a constant

value. The variance of the filter is given by the following equation:

22

var(x) = o - & (60)
where ;
N "0 2 . 4
2 _ 1 I (X -X;9) (61) !
T |
E

;) .

o¢ 1is the mean squared error

e is the mean error
N is the number of runs starting from 2
X7 s the true value of the state

ij is the estimated value of the state

This analysis provides the diagonal elements of the filter covar-

iance; the variance of the state estimates.




S— - —————— T DTy "'-.1
1
!
1
i

The Bayes and Kalman Filters are evaluated using twenty-five
separate runs of Case I of the satellite orbits. The Least Squares
Filter is evaluated using twenty-five runs of Case Il of the satellite
orbits. The mean squared error is calculated at the time of the last

measurement update.

At = 200 TU =45 hrs

2 for each state is plotted as a function

The mean squared error o
of the number of runs. Figure 3 represents a plot of the mean squared
error of the inclination versus the number of runs for the Least
Squares Filter. This plot shows the desired characteristic of approach-
ing a constant value after about 12-14 runs. Plots for the semi-major
axis and mean anomaly for each filter are shown in Figures 4-9. The
plots for the remaining states are included in Appendix F. As can be
seen in the plots (i.e., Fig 6) not all curves look like Figure 3. In
some cases it is difficult tu tell when and if the mean squared error
has reached a nearly constant value. However, in most cases, nearly
constant valdes are achieved after fifteen runs. Fifteen runs are
used for all subsequent Monte Carlo analyses.

Next, the variance obtained from the Monte Carlo analysis is com-
pared to the estimate of the variance from the filters. The vafjancgs
of the semi-major axis and mean anomaly are used for comparison. Table
II shows a comparison of the variances of these two elements for each
filter. The final estimate for Case I is used for comparison.

As shown in the table, all three filters underestimate the variance
of both elements. Similar results are obtained for the other four

elements. This is probably due to the assumption of perfect dynamics

28
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TABLE II

Covariance Analysis

Semi-major Axis (DUZ) Mean Anomaly (RadZ)
Filter Estimate Monte Carlo Estimate Monte Carlo
Least Squares 1.7 X 1011 6.3X106  4.7x109 1.4x 103
Bayes 2.2%x10°12 1.2%x106 2.6x10? 53x10°
Kalman 2.2%x1012 1.3x106 255x109 53x10°

in the filter models. The lack of process noise in the system could
result in artificially lTow estimates of the covariance matrix. This
also causes the filters to follow the model and ignore the measurement
updates, resulting in slow convergence.

Also noted in Table II is the slightly better performance of the
Bayes and Kalman filters compared to the Least Squares filter. This is
in part due to the basic operation of the filters. The Least Squares
filter is a bgtch estimator and updates the estimate after ten measure-
ment updates. The filter minimizes the residuals over the last ten
measurements. The Bayes and Kalman filters are recursive filters and
minimize the residuals of the last measurement only.

Finally, the data in Table II indicates that the Kalman and Bayes
filters provide similar results. This similarity will be investigated
further in the following sections.

State Estimate Errors

Another measure of filter performance is the error in the state
estimates. The errors evaluated in this section are the mean error,

the standard deviation, and the root mean squared (rms) error.




The mean error given in the previous section is

_ 1
Ej-ﬂ'

I ~MMZ

(x7-X7) (62)

i=1

This provides the mean error of the jth element based on N runs. As
stated in the previous sectidn, fifteen runs are used for the Monte
Carlo analysis.

The standard deviation is the square root of the variance defined
in the previous section and the rms error, g, is the square root of the
mean squared error o2 defined in the previous section.

Discussions of these errors for each satellite case are presented

in the following sections.

Case I

This orbit is used to verify filter performance under normal
operations. A measurement update is input every 10 time units, a little
more than two hours (133 min). Twenty measurement updates are processed
for filter evaluation.

Plots of mean error and mean error plus and minus rms error are
presented for comparison. Plots of mean error plus and minus standard
deviation may be more meaningful; however, for nearly zero-mean errors,
there is little difference between rms error and standard deviation.

The following plots show that the errors are nearly zero-mean.

Figures 10-12 are plots of the mean error and mean error plus and
minus rms error of the semi-major axis for the three filters. The mean
errors are nearly zero-mean. The Bayes and Kalman Filters demonstrate
a large initial transient in the estimates. The mean error minus the rms
error is nearly 800 kmwhich is unacceptable for this problem. Both

filters recover from these transients to errors of less than 50 km.
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Similar results are observed in the plots for mean anomaly for the
Bayes and Kalman Filters (Figs 13 and 14).

The large initial transients could be due to two possible problems.
First, there may be observability problems in estimating the derivative
of the semi-major axis a. The estimates of a in both the Bayes and
Kalman Filters tend to track noise in the data. Second, the filters'
initial estimate of the covariance matrices could be tuned to eliminate
the large initial transients.

Another difficulty is the appearance of a bias in the estimation of
the inclination (Figs 15-17). Also the Bayes ad Kalman Filters appear
to be diverging in the estimate of the inclination. These problems
will be investigated in Case II with a longer time scale.

The plots of mean error versus time for the remaining elements
are contained in Appendix F. A comparison of the estimation results of
the Bayes and Kalman Filters shows little or no difference. These
similarities are also demonstrated in Table III, which presents the
maximum mean error, maximum rms error, and maximum standard deviation
for each e1emént. Due to their similarities subsequent results will

be presented for only the Bayes or Kalman Filter, but not both.

Case II

This orbit is input to evaluate the filter performance with a
reduced rate of measurement updates. About two measurements per day
are input to the filters. Also, the semi-major axis is two earth radii,
so atmosphere effects will not be present. Only the Least Squares
and Bayes Filters are evaluated for this case.

Figures 18 and 19, plots of the mean error in the semi-major axis

and mean anomaly for the Least Squares Filter, indicate a periodic
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D v

Element
a (km)
e

i (deg)
w (deg)
a (deg)
M (degj

Element
a (km)
e

i (deg)
w (deg)
2 (deg)
M (deg)

Element

a (km)

e

i (deg)
w (deg)
a (deg)
M (deg)
Note 1:

TABLE III

Maximum Estimation Errors - Case I

Least Squares Filter

eM (mean error)

7.6 25.
0.0009
0.03
0.74
0.057
1.26
Bayes Filter
eM (mean error) oM
286 (32)1
0.0008
0.14
1.1 1
0.080
8.6 (0.20)] 17
Kalman Filter
eM (mean error) oM
281 (36)]
0.0009 0.
0.13
1.1
0.08
8.6 (0.17) 17.

0.
0.
0.
0.
3.

0.
0.
9
0.

0.
1.
0.

47

om (rms error)

0
0013
03
81
069

(rms error)
486 (42)1
0028

24

n

.2 (0.65)]

by

(rms error)
485 (42)1
0028

24

9

N

2 (0.65)1

Maximum values following initial transient.

Max Std Dev

22.6 km
0.0012
0.02
0.34
0.040
2.90

Max Std Dev
395 (15)1
0.00265
0.18
1.5
0.08
15.1 (0.63)1

Max Std Dev
395 (15)1
0.00245
0.18
1.5
0.10
15.1 (0.63)!




-

f
{

variation with a period of about 500 TU, about five days. This is the
frequency of the estimate update for this filter. The Bayes Filter
estimates, which are updated every 50 TU, about twelve hours, do not
show similar trends (Figs 20 and 21). These two plots again display
large initial transients in the semi-major axis and the mean anomaly.
The large transients are in the rms error and not in the mean error.

Figure 22, mean error in inclination versus time for the Bayes
Filter, shows that the filter is again diverging in the estimate of
the inclination.

The plots of mean error versus time for the remaining elements
are contained in Appendix F. The maximum mean errors, rms errors, and

standard deviations for Case II are shown in Table IV.

Case III

This orbit is used to evaluate filter performance with large
perturbations due to air drag. The Least Squares and Kalman Filters
were evaluated for this orbit. Theperigee altitude of this orbit is
200 km and the apogee altitude is 1700 km. The drag coefficient, B, of
the satellite is increased from 0.01 to 0.1 Kg/m¢. The non-circular
orbit is used to provide variations in the air drag and thus the
derivative of the semi-major axis. Plots of mean error and mean error
plus and minus rms error in the semi-major axis verus time for the
two filters are shown in Figures 23 and 24. Simiiar plots for the mean
anomaly are shown in Figures 25 and 26. .

Table V contains the maximum mean errors, rms errors, and standard

deviations for each element for both filters.
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TABLE IV

Maximum Ervrors - Case Il

Least Squares Filter 1

{ Element EM (mean error) oy (rms error) Max Std Dev

a (km) 10.8 40.8 40.4 , H

e 0.0014 0.0017 0.0010

i (deg) 0.09 0.032 0.031

w (deg) 0.26 0.45 0.36
r Q (deg) 0.12 0.13 0.04

M (deg) 1.09 7.02 7.02

Bayes Filter

Element ey (mean error) ap (rms error) Max Std Dev

a (km) 30.0 (4.7)1 212 (5.9)1 204 (1.85)1 |
e 0.0006 0.0036 0.0012

i (deg) - 0.08 0.12 0.09

w (deg) 1.1 1.27 0.69

a (deg) 0.014 0.044 0.043

M (deg) 1.26 (0.23)1 10.1 (0.50)1 10.0 (0.38)!

Note 1: Maximum values following initial transients.
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Element
a (km)
e

i (deg)
w (deg)
o (deg)
M (deg)

Element

a (km)

e

i (deg)
w (deg)
2 (deg)
M (deg)
Note 1:

TABLE

v

Maximum Errors - Case III

Lea;t Squares Filter

4.33
0.001
0.003
0.74
0.08
0.86

oM

16.0
0.001
0.12
0.79
0.09
2.50

Kalman Filter

eM
126 (12.6)]
0.0021
0.20
1.43
0.09
5.27 (0.26)]

oM
588 (19.1)1
0.0036
0.29
1.98
0.14
36.7 (0.60)!

Max Std Dev

.0
.001
.03
.33
.04

N O O O ©Oo o

.46

Max Std Dev
580 (14.0)]

Maximum values following initial transients.
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0.0030
0.21

1.32

0.1

36.1 (0.57)1




Case IV

This orbit is used to demonstrate the effects of singularities on
the estimators due to undefined components in the classical elements.

The first singularity is due to a circular orbit. For a circular orbit,
the argument of perigee is not defined since the perigee itself is not
defined. Subsequently the mean anomaly is not defined. A zero inclina-
tion orbit presents a singularity in the right ascension of the ascend-
ing node since the ascending node is not defined.

It should be noted that these singularities are actually due to the
transformation from position and velocity vectors to classical elements,
and are not singularities in the orbit itself. The orbit is still
defined by six elements; but, the classical elements do not uniquely
define the orbit.

A1l the filters have difficulty with this orbit. The major problem
is estimating the mean anomaly. Since this quantity is not uniquely
defined, large residuals occur. The filters attempt to zero out these
residuals by édjusting the mean motion, which in turn causes the semi-
major axis to vary. The estimate of the semi-major axis diverges rapidly;
and, in the case of this orbit, the filters eventually estimate a negative
semi-major axis, halting program execution.

This represents a major problem for the filters used in this study.
A possible solution to this problem is to use equinoctal orbital elements
as the filter states [Ref 9; 44]. These elements do not have singular-
ities due to circular orbits or zero inclination orbits. Classical
elements could still be used as measurement updates. The only change
would be the observation relationship, H. The actual estimator equations

would not be changed.
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Case V

This orbit presents observation problems to the estimators. Due
to the highly eccentric orbit, the satellite is beyond the range of
the radars most of the time; therefore, large data gaps are present in
the data.

Attempting an observation every two hours, only one observation 4
per day is obtained due to the range restrictions. Due to the long
running time of the truth model to provide data for the filters, a
Monte Carlo analysis for this case was not completed. A single run 1
using the Kalman and Least Squares Filters shows no difficulty in
estimating the orbital elements for this highly eccentric, low perigee
orbit. Table VI shows the estimation errors for the two filters after

twenty measurement updates, about twenty days.

TABLE VI

Estimation Errors for Case V

Element . Least Square Kalman
a 25.5 km 57.0 km
e 0.001 0.0008
i 0.006° 0.03°
w 0.20° 0.12°
2 | 0.97° 0.02°
M . 3.15° 2.75°

It should be noted that these errors are only for one run and

are not the result of a Monte Carlo analysis.

61




Discussion

As seen in the previous examples, all filters encounter problems
in estimating the elements and the errors.

First, estimation was not possible with singularities in the
classical elements. Second, the Bayes and Kalman Filters demonstrate
large initial transients in the estimation problem. These initial
transients are reduced. These transients are probably due to observa-
bility problems in the derivative of the semi-major axis and an
improperly tuned filter.

Next, the in-track errors in the estimates are too large for SDC
application. This may be due to using too large errors in the initial
radar data or failure of the filters to converge within the specified
number of iteration.

Finally, the Bayes and Kalman Filters track noise in the estimates
of the derivatives of the semi-major axis and the eccentricity. The
wrong sign on these values would greatly effect the ability of the
filters to prbpagate the states forward and predict the satellite's
position for radar acquisition.

In spite of the problems listed above, the potential of using
two-body elements has been demonstrated in this study. If the prob-
lems listed above can be eliminated, any of the filters evaluated
could be used by SDC for orbital estimation.

Another characteristic noted in the filter performance is the
tendency of the gain matrices in the Kalman and Bayes Filters to

approach steady state for a particular orbit.
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As shown in Chapter II1I, the gains for the Bayes and Kalman are
re-evaluated for every measurement update. After several measurements
the gain matrices change very little from update to update. This is
due to the nearly constant values of the orbital elements. If a pre-
determined gain can be stored in the computer a significant reduction
in computer time can be achieved. In the case of the Kalman Filter, no
matrix inversions would be required. The covariance update would be

given by
P(+) = P(-) - KHeP(-) (63)
and the change in the state estimate would be given by
8x(+) =‘6£(1-1)+ K(r - Hesx(-)) (64)
The calculation of the gain

K = P(-)e7 HT(Q + HoP HTe)™! (65)

would not be required for every measurement update.




VI. Conclusions and Recommendations

Conclusions
The following conclusions are drawn from the filter performance

analysis completed in this study:

1. The feasibility of using two-body classical orbital elements / J
as measurement updates for orbital element estimation is demonstrated
by all three filters.

2. A1l three filters diverge when estimating the elements of a
circular orbit. H

3. In-track errors in the filter estimates are too large for SDC
requirements and techniques must be developed to reduce the error.

4. A1l filters underestimate the covariance of the estimates.

5. The Kalman and Bayes Filters are similar and differences in
their performance can not be detected.

6. A1l three filters track noise in the estimation of the
derivative of.the semi-major axis.v

7. The Bayes and Kalman Filters have large initial transients
in the estimation of the semi-major axis and the mean anomaly. These

transients are reduced with further updates.

Recommendations

1. Change the filter states to equinoctal orbital elements to
eliminate problems due tosingularities in the classical elements.
2. Add process noise to the filter dynamics and tune the filters

to improve covariance estimates and remove initial transients.
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3. Re-program the Least Squares Filter to improve computational

efficiency by taking advantage of symmetry and zeroes in the matrices.

4. Modify the Bayes and Kalman Filters to provide batch estimates

of the derivative of the semi-major axis.

5. Obtain actual satellite data for further filter evaluation.

6. Investigate the possibility of using a constant gain matrix
for each orbit in the Bayes and Kalman Filters.

7. Investigate other methods of estimating the air drag such as
parameter identification.

8. Change the Bayes and Kalman Filters from infinite memory
filters to finite or fading-memory filters.

9. Investigate the estimation of the two-body orbital elements
from radar data to gain insight into evaluating the measurement noise

used in the filters.




10.

1.

12.

13.

14.
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Coordinate Frame Transformations

Appendix A

There are two coordinate frame transformations required in this

study. The first is a transformation from the perifocal to the geocentric-

equatorial coordinate frame [Fig 27].

satellite's initial position and velocity vector from the input orbital

elements. The transformation is given by [Ref 3, 80-83]:

where

R is the direction cosine matrix between the two frames.

The elements of R are

R

Y

It is used in the generation of the

COS Q COS w - Sin © sin w cos i

Ry = -cos @ sin w - sin @ cos w cos i

R13 = sin @ sin i

R21 = sin @ cos w + cos @ sin w cos i

R22 = -sin @ sin w + cos Q cos w cos i

Ro3 = -cos @ sin i
R31 = sin w sin i
R32 = cos w sin i

R33 = cos i

The angles i, 2 , w are the inclination, right ascension and

argument of perigee.
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Figure 27. Relationship Between Perifocal
and Geocentric Equitorial Frames




The second coordinate frame transformation is from the local

horizon coord’nate frame. This transformation is used to rotate the
geopotential acceleration terms into the geocentric-equatorial frame

for integration. The rotation is given by [Ref 9; 91].

X X

Y = 1] Yh (63)
z Zh .
where
COS o CO0S § -sin a  -cos a sin §
[T] =|sin a« cos & cosS a -sin a sin & | (64)
sin ¢ 0 cos ¢
where

a is the geocentric right ascension

§ is the geocentric declination
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Appendix B

Position and Velocity Data from Classical Elements

In this study, a sate]]jte's initial position and velocity vectors
are derived from an input orbit. The equations needed for this trans-

formation are presented below [Ref 3, 72-73]:

P = a(1-e?) (€5)

E-esinE=M (66)
_ P

= T¥ecosv (68)

sin v =_3f%:3_ sin E (69)

r=rcosv P +rsin Q (70)

v =“g [-sin v P+ (e + cos v ) Q] 4 (71)

The position and velocity vector are then transformed ;rom the
perifocal to the geocentric-equatorial coordinate frame.

It should be noted that equation (66) is known as Kepler's equation
and a closed form solution for the eccentric anomaly, E, cannot be

obtained. A Newton iteration scheme is used to evaluate E, using

Eo = M as an initial guess.




Appendix C

i Geopotential Constants and Legendre Polynomials

90-91]:

T IR e

cos & Pé
]
cos & R3

: '
; cos 6 P4

2]
cos § P2

[

t Listed below are the geopotential coefficients for the zonal and

sectoral harmonies used in this study [Ref 6]:

Jp =1.082637 X 1076
J3 = -2.541 X 1076
Jg = -1.618 X 1070
C22 = 1.5362 X 10-6
Spp = -.86358 X 1070

Also, the following Legendre polynomials are required for evalua-

tion of the perturbing accelerations due to the geopotential [Ref 9;

Po =1

P1 =sin ¢ o |

P3 = %{-2 sin § + 5 P2 sin §]
Pg = 40-3 P2 + 7 P3 sin 6]

2 = 2

P5 3 cos¢ §

3 sin 6§ cos 6

sin 6 cos § Qi + 3°cos & Py

= sin § cos & Q; + 4 cos & Pj

2
P2
cos 6

-2 sin 6

72

4

(72)
(73)
(74)
(75)
(76)

(77)
(78)

(79)
(80)
(81)
(82)

(83)
(84)
(85)

(86)




where

§ is the geodetic declination of the satellite.
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Appendix D

0rbi’ta'| Elements from Position and Velocity Data

The estimators in this study use classical orbital elements as
measurement updates. These elements are calculated from the position
and velocity data from the truth model. Prior to calculating the
elements, noise is added to the data. The following equations are used
to obtain classical elements from thegeocentric-equatorial position and

velocity data [Ref 3; 62-63]:

h=rxy (87)
n=kxh (88)
g=l—[(v-%)£-(z-1)x] (89)
e = |ef (90)
p = hZ/y (91)
R
. _ hg .
cos i =—h-0<1 < 180 (93)
cos @ = If nj >0, o < 180° (94)
- n-e o
CoS w = == If ek >0, w < 180 (95)
e.r
cos v = == Ifr-v>0, vo < 180° (96)
{
cos E = %—I—% ) (97) _ 4

=
n

E-esinE (98)




where

h is the angular momentum vector

n is the nodal vector

The eccentric anomaly, E, should be in the same half-plane as the
true anomaly, v,.

This method provides a set of osculating elements which match the

orbit at the time the position and velocity is generated.
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Appendix E

Derivation of State Transition Matrix

The state transition ma;rix, ¢ , is calculated from equation (16)

in Chapter III.

¢ =V.f _ ,
ofy afy
or, af1/ax1 5;(—2' ...... 3_X§
of ;
® = afz/ax] ......... 578— (99) ?
. of
8
afg/ax] ......... 3"—8J

where

x(t) = f(x(tg), t)

is an approximate solution to the non-linear system.

The equations for the state dynamics presented in Chapter III

(equation (16)) are listed below:

f1 = a(t) = ag + a(t - ty) (100)
fo = e(t) = eg + e(t - to) (101)
f3 = i(t) = i (102) ;
fg = w(t) = wo + ;(t - to) (103)
fg = o(t) = 99 + 5(t - tp) (104)
f6 = M(t) = Mo + ni(t - to) + 7 i(t - t)?  (108)
f7 = a(t) = ag (106)
fg = e(t) = ép (107)

where




E et i

ng = n+ € (108)

-3nJdz r 2

o = ———--—-f—-(% sin i-2) (109)
2a2(1-e2)2
-3n J2 re2

@ = —— cos i (110)
2a2(1-e2)2 :

- _-3n .

n -TE a (]]])
-3n Jor,2

: = ~——-—3—9———-(%-s1n2 i-1) (112)

2a2(1-e2)3/2

Evaluation of the partial derivative provides the following

elements to the ¢ matrix:

%3 =1 i=1,8 (113)
$,7 = ¢2,8 =t -1 (1a4)
aandared 5 .o
SRR wiy ) “2)(t -t 115
44,1 ] a3(]_e2)2 (2 sin i-2)( O) ( )
-6n J, r Ze
= 2 e 5 .2
04,2 = ———————— (5 sin® i-2)(t - ty) (116)
4.2 az(l-e2)3; 2 0
150 Jp re? .
¢ = ——5—=- (sin i cos i)(t - to) (117)
4,3 2a2(1-¢2)2 °
2
21n J2 re
¢ = —2_5=_ (cos i (t - t,) (118)
51 4a2(1-e2)?2 0
6n Jz Y‘e e
,2 = ——————— (cos i (t - tg) (119)
5.2 7 301-a)3 (t - to
3n J2 re2
b 2= ————sin i (t - tg) R (120)
5,3 2a2(1-e2)2 °
3n 21n Jp 'ez 3 5.2
= 22 (t - ty) + —————— (5 sin¢ 1-1)(t - t,) (121
¢6s] 2 a ( 0) 483(]-92)2 (f 0 )
77




;;LT!‘I

xr

2
¢ = £ = (5 sin? i-1)(t - tg)
6.2 2a2(1-¢2)5/2 2 °
-9n J, ra
46,3 = =2 & __ <in i cos i (t - tg)

2a2(1-¢2)3/2

96,7 = %3% (t - to)?

The remaining terms in the ¢ matrix are all zero.

(122)

(123)

(124)

s o b s e e e -




Appendix F

Plots for Filter Performance Analysis

The following plots are.presented to supplement the discussion
and data presented in Chapter V. The plots are the mean error and
mean error plus and minus rms error versus time. As stated in

Chapter V, the rms error is nearly equal to the standard deviation.
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